iterative modeling with MLHO
Usage
mlho.it(
dbmart,
labels = labeldt,
dems = NULL,
test.sample = 30,
MSMR.binarize = FALSE,
MSMR.sparsity = 0.005,
MSMR.jmi = TRUE,
MSMR.topn = 200,
MSMR.encounterLevel = FALSE,
MSMR.valuesToMerge = FALSE,
mlearn.save.model = FALSE,
mlearn.note = "mlho_phewas run",
mlearn.aoi = "demo",
mlearn.cv = "cv",
mlearn.nfold = 5,
mlearn.calSHAP = FALSE,
multicore = FALSE,
preProc = TRUE,
iterations = 5
)
Arguments
- dbmart
dbmart table
- labels
should be the labeldt table
- dems
table containing the demographic variables
- test.sample
put 20 if you want to use 20 percent for testing and 80 percent for training
- MSMR.binarize
MSMR.lite parameter
- MSMR.sparsity
MSMR.lite parameter
- MSMR.jmi
MSMR.lite parameter
- MSMR.topn
MSMR.lite parameter
- MSMR.encounterLevel
MSMR.lite parameter
- MSMR.valuesToMerge
MSMR.lite parameter
- mlearn.save.model
mlearn parameter
- mlearn.note
mlearn parameter
- mlearn.aoi
mlearn parameter
- mlearn.cv
mlearn parameter
- mlearn.nfold
mlearn parameter
- mlearn.calSHAP
mlearn parameter
- multicore
if you want to parallelize the process
- preProc
preprocessig on the train data or not
- iterations
number of iterations you want. recommended at least 5. needs to be numeric