The downloaded binary packages are in
/var/folders/tk/fzb3c9wj2zn6bztrz6kd_mxr0000gq/T//RtmpSnxDFX/downloaded_packages
── R CMD build ─────────────────────────────────────────────────────────────────
* checking for file ‘/private/var/folders/tk/fzb3c9wj2zn6bztrz6kd_mxr0000gq/T/RtmpSnxDFX/remotes106af12ff0e2e/clai-group-MLHO-44e016f/DESCRIPTION’ ... OK
* preparing ‘mlho’:
* checking DESCRIPTION meta-information ... OK
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
Removed empty directory ‘mlho/entropy’
Removed empty directory ‘mlho/results’
NB: this package now depends on R (>= 3.5.0)
WARNING: Added dependency on R >= 3.5.0 because serialized objects in
serialize/load version 3 cannot be read in older versions of R.
File(s) containing such objects:
‘mlho/data/incident_data.RData’ ‘mlho/data/pHE_map.RData’
‘mlho/data/syntheticmass.RData’
* building ‘mlho_0.1.1.tar.gz’
# load MLHO, afterwards source the MSMR.lite.R file to overwrite the MSMR.lite function# in the package with the updated one (the encounter functionality is only available in the R file)library(mlho)#load and install required dependeciespacman::p_load(data.table, devtools, backports, Hmisc, tidyr,dplyr,ggplot2,plyr,scales,readr, httr, DT, lubridate, DALEX, tidyverse,reshape2,foreach,doParallel,caret,gbm,lubridate,praznik)library(counterfactuals)
Warning: package 'counterfactuals' was built under R version 4.3.3
library(iml)
Prepare the data
We load several datasets from the MLHO package, including incident data and demographic information.
dbmart consists of patient ID (patient_num) and associated phenotypes (phenx). Each patient can have multiple features, including different diagnostic events or conditions.
labelDT includes patient ID (patient_num), the start date of each event (start_date), and a binary label (label) indicating the outcome of interest.
dems contains dempgraphic information for each patient.
Splitting data into training and testing sets using a 70-30 ratio
We extract a unique list of “patient_num” from dbmart. Using the list of unique patient ID, we randomly select 30% of these patients to include in our test set.
After splitting the data into training and testing sets, the next step is to transform the data to ensure that the data aligns with the requirements of the modeling functions in the MLHO package.
dat.train <-subset(dbmart,!(dbmart$patient_num %in%c(test_ind)))data.table::setDT(dat.train)#values must be in column named valuedat.train[,value :=1]uniqpats.train <-c(as.character(unique(dat.train$patient_num)))
We use the MSMR.me function from the MLHO package to perform a series of transformations and feature selections by labeling each feature by categorizing them to “history”, “past”, and “last”. The parameters include options for sparsity, use of the joint mutual information criterion (jmi), the number of top features to select (topn), and others that influence how the data is processed and analyzed.
The figure above explains how the features are labeled in MSMR.me. Each patient’s data is filtered to process medical encounters sequentially. Events before the first encounter are labeled as “history.” For each encounter, data from the current to the last encounter are labeled as “last,” and if there is a previous encounter, data from the last encounter to the previous one are labeled as “past.” The buffer parameter gives flexibility to add a time interval within the infection period. For example, a buffer can be the 14 days of COVID-19 infection by each time label.
Once the data is labeled, all labels (history, past, last) are merged and reformatted into a wide format, where each patient row summarizes counts of each label.
MLHO.dat <- dat.trainlabels = labelDTpatients <- uniqpats.trainbinarize=Tsparsity=0.05## Sample size * sparsity. Don't pick a too small value to avoid overfittingjmi=TRUEtopn=50patients <- uniqpats.trainmulticore=TencounterLevel=TvaluesToMerge = FtimeBufffer=c(h=0,p=0,l=0,o=-30)dat.train <-MSMR.me(MLHO.dat, labels, binarize, sparsity, jmi, topn, patients <- uniqpats.train,multicore=FALSE,encounterLevel=TRUE,valuesToMerge =TRUE, timeBufffer)
We repeat the data processing and transformation again on the test set.
dat.test <-subset(dbmart,dbmart$patient_num %in%c(test_ind))uniqpats.test <-c(as.character(unique(dat.test$patient_num)))# remove phenx not required to create the encounter based phenx # (remove _last, _past and _history from the colnames to determine the phenxs)dat.train.colnames <-vapply(strsplit(colnames(dat.train),"_"),`[`, 1, FUN.VALUE=character(1))dat.test <-subset(dat.test,dat.test$phenx %in% dat.train.colnames)setDT(dat.test)#values must be in column named valuedat.test$value <-1MLHO.dat.test = dat.test# important to have a value and phenx column to mergedat.test <-MSMR.me(MLHO.dat=dat.test,patients = uniqpats.test,sparsity=NA,jmi =FALSE,labels = labelDT,encounterLevel =TRUE,valuesToMerge =TRUE,binarize = F, timeBufffer)
[1] "Applying encounter based transformations!"
# remove sparse and not relevant _past, _last _history phenx according to the train datadat.test <- dat.test %>%select(one_of(colnames(dat.train)))
Update demographics and labels Data
The dems dataset, which contains demographic information, is updated to include relevant labels from labelDT. This integration involves merging both datasets by “patient_num”, then modifying the “patient_num” to include the “start_date” for a unique identifier per patient encounter.
Similarly, labelDT is updated to concatenate “patient_num” with “start_date” to create a unique identifier for each patient’s encounter, which simplifies subsequent merging and data handling processes. The “start_date” column is then removed to clean up the dataset:
# merge patientnum and encounter date in labelDTlabelDT <- labelDT %>%mutate(patient_num =paste0(patient_num,"_" ,start_date)) %>%select(-start_date)
Train model
We use the mlearn function to do the modeling, which includes training the model and testing it on the test set.
Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
in the result set. ROC will be used instead.
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9510 nan 0.1000 0.0134
2 0.9286 nan 0.1000 0.0104
3 0.9123 nan 0.1000 0.0082
4 0.8977 nan 0.1000 0.0066
5 0.8868 nan 0.1000 0.0053
6 0.8779 nan 0.1000 0.0042
7 0.8611 nan 0.1000 0.0070
8 0.8536 nan 0.1000 0.0037
9 0.8464 nan 0.1000 0.0032
10 0.8385 nan 0.1000 0.0025
20 0.7875 nan 0.1000 0.0022
40 0.7366 nan 0.1000 0.0008
60 0.7091 nan 0.1000 0.0003
80 0.6914 nan 0.1000 0.0002
100 0.6796 nan 0.1000 -0.0001
120 0.6701 nan 0.1000 -0.0000
140 0.6627 nan 0.1000 0.0000
150 0.6604 nan 0.1000 -0.0002
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9397 nan 0.1000 0.0203
2 0.9078 nan 0.1000 0.0166
3 0.8843 nan 0.1000 0.0126
4 0.8622 nan 0.1000 0.0102
5 0.8451 nan 0.1000 0.0074
6 0.8301 nan 0.1000 0.0076
7 0.8150 nan 0.1000 0.0070
8 0.8034 nan 0.1000 0.0060
9 0.7939 nan 0.1000 0.0047
10 0.7851 nan 0.1000 0.0044
20 0.7269 nan 0.1000 0.0019
40 0.6744 nan 0.1000 0.0005
60 0.6482 nan 0.1000 -0.0001
80 0.6332 nan 0.1000 -0.0002
100 0.6214 nan 0.1000 -0.0002
120 0.6157 nan 0.1000 -0.0001
140 0.6104 nan 0.1000 -0.0002
150 0.6090 nan 0.1000 -0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9316 nan 0.1000 0.0226
2 0.8948 nan 0.1000 0.0175
3 0.8650 nan 0.1000 0.0154
4 0.8404 nan 0.1000 0.0116
5 0.8208 nan 0.1000 0.0097
6 0.8018 nan 0.1000 0.0081
7 0.7868 nan 0.1000 0.0070
8 0.7729 nan 0.1000 0.0067
9 0.7595 nan 0.1000 0.0062
10 0.7469 nan 0.1000 0.0047
20 0.6840 nan 0.1000 0.0018
40 0.6372 nan 0.1000 0.0003
60 0.6172 nan 0.1000 0.0002
80 0.6052 nan 0.1000 -0.0001
100 0.5977 nan 0.1000 -0.0001
120 0.5912 nan 0.1000 -0.0002
140 0.5865 nan 0.1000 -0.0003
150 0.5841 nan 0.1000 -0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9550 nan 0.1000 0.0126
2 0.9350 nan 0.1000 0.0098
3 0.9185 nan 0.1000 0.0077
4 0.9057 nan 0.1000 0.0054
5 0.8932 nan 0.1000 0.0065
6 0.8821 nan 0.1000 0.0052
7 0.8730 nan 0.1000 0.0042
8 0.8654 nan 0.1000 0.0032
9 0.8552 nan 0.1000 0.0051
10 0.8487 nan 0.1000 0.0033
20 0.7954 nan 0.1000 0.0024
40 0.7412 nan 0.1000 0.0011
60 0.7098 nan 0.1000 0.0004
80 0.6897 nan 0.1000 0.0003
100 0.6758 nan 0.1000 -0.0001
120 0.6670 nan 0.1000 0.0002
140 0.6588 nan 0.1000 0.0002
150 0.6559 nan 0.1000 -0.0004
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9353 nan 0.1000 0.0199
2 0.9045 nan 0.1000 0.0141
3 0.8804 nan 0.1000 0.0116
4 0.8605 nan 0.1000 0.0096
5 0.8444 nan 0.1000 0.0070
6 0.8298 nan 0.1000 0.0062
7 0.8164 nan 0.1000 0.0065
8 0.8053 nan 0.1000 0.0050
9 0.7952 nan 0.1000 0.0052
10 0.7862 nan 0.1000 0.0045
20 0.7325 nan 0.1000 0.0013
40 0.6808 nan 0.1000 0.0005
60 0.6518 nan 0.1000 0.0005
80 0.6324 nan 0.1000 0.0002
100 0.6218 nan 0.1000 0.0000
120 0.6149 nan 0.1000 -0.0002
140 0.6076 nan 0.1000 -0.0002
150 0.6042 nan 0.1000 -0.0002
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9323 nan 0.1000 0.0229
2 0.8968 nan 0.1000 0.0169
3 0.8676 nan 0.1000 0.0142
4 0.8428 nan 0.1000 0.0119
5 0.8206 nan 0.1000 0.0105
6 0.8042 nan 0.1000 0.0080
7 0.7902 nan 0.1000 0.0074
8 0.7778 nan 0.1000 0.0052
9 0.7671 nan 0.1000 0.0045
10 0.7555 nan 0.1000 0.0054
20 0.6904 nan 0.1000 0.0011
40 0.6387 nan 0.1000 0.0001
60 0.6169 nan 0.1000 -0.0001
80 0.6001 nan 0.1000 -0.0001
100 0.5920 nan 0.1000 -0.0002
120 0.5863 nan 0.1000 -0.0000
140 0.5806 nan 0.1000 -0.0003
150 0.5794 nan 0.1000 -0.0003
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9511 nan 0.1000 0.0134
2 0.9296 nan 0.1000 0.0106
3 0.9132 nan 0.1000 0.0084
4 0.8998 nan 0.1000 0.0068
5 0.8887 nan 0.1000 0.0054
6 0.8761 nan 0.1000 0.0060
7 0.8673 nan 0.1000 0.0046
8 0.8568 nan 0.1000 0.0045
9 0.8496 nan 0.1000 0.0037
10 0.8423 nan 0.1000 0.0037
20 0.7903 nan 0.1000 0.0017
40 0.7357 nan 0.1000 0.0006
60 0.7040 nan 0.1000 0.0007
80 0.6862 nan 0.1000 0.0005
100 0.6705 nan 0.1000 0.0003
120 0.6606 nan 0.1000 -0.0001
140 0.6535 nan 0.1000 -0.0000
150 0.6508 nan 0.1000 -0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9405 nan 0.1000 0.0205
2 0.9103 nan 0.1000 0.0159
3 0.8852 nan 0.1000 0.0123
4 0.8631 nan 0.1000 0.0106
5 0.8454 nan 0.1000 0.0085
6 0.8291 nan 0.1000 0.0079
7 0.8169 nan 0.1000 0.0049
8 0.8046 nan 0.1000 0.0052
9 0.7947 nan 0.1000 0.0049
10 0.7854 nan 0.1000 0.0041
20 0.7281 nan 0.1000 0.0015
40 0.6689 nan 0.1000 0.0003
60 0.6457 nan 0.1000 -0.0001
80 0.6294 nan 0.1000 -0.0001
100 0.6164 nan 0.1000 -0.0001
120 0.6084 nan 0.1000 -0.0001
140 0.6018 nan 0.1000 -0.0006
150 0.5993 nan 0.1000 -0.0003
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9348 nan 0.1000 0.0232
2 0.8976 nan 0.1000 0.0181
3 0.8665 nan 0.1000 0.0155
4 0.8418 nan 0.1000 0.0114
5 0.8198 nan 0.1000 0.0096
6 0.8003 nan 0.1000 0.0087
7 0.7837 nan 0.1000 0.0072
8 0.7705 nan 0.1000 0.0059
9 0.7576 nan 0.1000 0.0062
10 0.7469 nan 0.1000 0.0048
20 0.6837 nan 0.1000 0.0025
40 0.6320 nan 0.1000 0.0003
60 0.6095 nan 0.1000 -0.0001
80 0.5977 nan 0.1000 -0.0001
100 0.5861 nan 0.1000 -0.0001
120 0.5800 nan 0.1000 -0.0001
140 0.5756 nan 0.1000 -0.0002
150 0.5740 nan 0.1000 -0.0002
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9549 nan 0.1000 0.0124
2 0.9343 nan 0.1000 0.0099
3 0.9177 nan 0.1000 0.0075
4 0.9060 nan 0.1000 0.0060
5 0.8935 nan 0.1000 0.0061
6 0.8851 nan 0.1000 0.0034
7 0.8751 nan 0.1000 0.0053
8 0.8659 nan 0.1000 0.0042
9 0.8594 nan 0.1000 0.0025
10 0.8521 nan 0.1000 0.0035
20 0.7979 nan 0.1000 0.0024
40 0.7413 nan 0.1000 0.0009
60 0.7105 nan 0.1000 0.0008
80 0.6901 nan 0.1000 0.0002
100 0.6776 nan 0.1000 0.0000
120 0.6663 nan 0.1000 -0.0001
140 0.6594 nan 0.1000 0.0000
150 0.6579 nan 0.1000 -0.0002
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9418 nan 0.1000 0.0194
2 0.9106 nan 0.1000 0.0148
3 0.8857 nan 0.1000 0.0103
4 0.8637 nan 0.1000 0.0102
5 0.8475 nan 0.1000 0.0073
6 0.8321 nan 0.1000 0.0079
7 0.8185 nan 0.1000 0.0062
8 0.8074 nan 0.1000 0.0050
9 0.7961 nan 0.1000 0.0050
10 0.7879 nan 0.1000 0.0034
20 0.7331 nan 0.1000 0.0020
40 0.6753 nan 0.1000 0.0004
60 0.6445 nan 0.1000 -0.0002
80 0.6280 nan 0.1000 0.0003
100 0.6176 nan 0.1000 -0.0002
120 0.6101 nan 0.1000 0.0000
140 0.6043 nan 0.1000 0.0000
150 0.6016 nan 0.1000 -0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9334 nan 0.1000 0.0219
2 0.8962 nan 0.1000 0.0175
3 0.8658 nan 0.1000 0.0146
4 0.8419 nan 0.1000 0.0117
5 0.8233 nan 0.1000 0.0094
6 0.8051 nan 0.1000 0.0085
7 0.7887 nan 0.1000 0.0067
8 0.7761 nan 0.1000 0.0058
9 0.7654 nan 0.1000 0.0052
10 0.7544 nan 0.1000 0.0047
20 0.6865 nan 0.1000 0.0016
40 0.6314 nan 0.1000 0.0014
60 0.6079 nan 0.1000 0.0007
80 0.5936 nan 0.1000 0.0008
100 0.5841 nan 0.1000 0.0007
120 0.5789 nan 0.1000 -0.0001
140 0.5749 nan 0.1000 -0.0004
150 0.5724 nan 0.1000 -0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9538 nan 0.1000 0.0121
2 0.9339 nan 0.1000 0.0092
3 0.9191 nan 0.1000 0.0073
4 0.9048 nan 0.1000 0.0059
5 0.8922 nan 0.1000 0.0061
6 0.8819 nan 0.1000 0.0049
7 0.8731 nan 0.1000 0.0042
8 0.8635 nan 0.1000 0.0040
9 0.8567 nan 0.1000 0.0027
10 0.8497 nan 0.1000 0.0034
20 0.7960 nan 0.1000 0.0017
40 0.7410 nan 0.1000 0.0006
60 0.7096 nan 0.1000 0.0006
80 0.6900 nan 0.1000 0.0003
100 0.6767 nan 0.1000 0.0000
120 0.6674 nan 0.1000 -0.0002
140 0.6598 nan 0.1000 -0.0001
150 0.6571 nan 0.1000 0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9399 nan 0.1000 0.0193
2 0.9120 nan 0.1000 0.0132
3 0.8861 nan 0.1000 0.0133
4 0.8643 nan 0.1000 0.0101
5 0.8462 nan 0.1000 0.0089
6 0.8313 nan 0.1000 0.0074
7 0.8183 nan 0.1000 0.0062
8 0.8067 nan 0.1000 0.0057
9 0.7975 nan 0.1000 0.0043
10 0.7884 nan 0.1000 0.0044
20 0.7331 nan 0.1000 0.0019
40 0.6824 nan 0.1000 0.0007
60 0.6537 nan 0.1000 0.0003
80 0.6338 nan 0.1000 -0.0000
100 0.6236 nan 0.1000 -0.0002
120 0.6143 nan 0.1000 0.0001
140 0.6095 nan 0.1000 0.0001
150 0.6039 nan 0.1000 0.0004
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9324 nan 0.1000 0.0232
2 0.8981 nan 0.1000 0.0175
3 0.8693 nan 0.1000 0.0136
4 0.8443 nan 0.1000 0.0124
5 0.8241 nan 0.1000 0.0095
6 0.8070 nan 0.1000 0.0090
7 0.7921 nan 0.1000 0.0070
8 0.7796 nan 0.1000 0.0054
9 0.7661 nan 0.1000 0.0062
10 0.7553 nan 0.1000 0.0050
20 0.6895 nan 0.1000 0.0009
40 0.6392 nan 0.1000 0.0007
60 0.6185 nan 0.1000 0.0002
80 0.6039 nan 0.1000 0.0001
100 0.5938 nan 0.1000 -0.0002
120 0.5877 nan 0.1000 -0.0000
140 0.5834 nan 0.1000 -0.0001
150 0.5818 nan 0.1000 -0.0002
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9342 nan 0.1000 0.0227
2 0.8990 nan 0.1000 0.0170
3 0.8688 nan 0.1000 0.0149
4 0.8425 nan 0.1000 0.0110
5 0.8207 nan 0.1000 0.0109
6 0.8023 nan 0.1000 0.0073
7 0.7867 nan 0.1000 0.0076
8 0.7726 nan 0.1000 0.0062
9 0.7612 nan 0.1000 0.0055
10 0.7513 nan 0.1000 0.0045
20 0.6866 nan 0.1000 0.0015
40 0.6432 nan 0.1000 0.0003
60 0.6171 nan 0.1000 -0.0002
80 0.6020 nan 0.1000 -0.0001
100 0.5941 nan 0.1000 0.0001
120 0.5899 nan 0.1000 -0.0003
140 0.5849 nan 0.1000 -0.0001
150 0.5837 nan 0.1000 -0.0003
Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
in the result set. ROC will be used instead.
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9535 nan 0.1000 0.0122
2 0.9353 nan 0.1000 0.0097
3 0.9198 nan 0.1000 0.0078
4 0.9069 nan 0.1000 0.0064
5 0.8931 nan 0.1000 0.0065
6 0.8820 nan 0.1000 0.0052
7 0.8737 nan 0.1000 0.0042
8 0.8658 nan 0.1000 0.0023
9 0.8580 nan 0.1000 0.0034
10 0.8492 nan 0.1000 0.0040
20 0.7949 nan 0.1000 0.0022
40 0.7377 nan 0.1000 0.0008
60 0.7045 nan 0.1000 0.0006
80 0.6847 nan 0.1000 0.0004
100 0.6712 nan 0.1000 -0.0001
120 0.6602 nan 0.1000 0.0002
140 0.6531 nan 0.1000 0.0001
150 0.6503 nan 0.1000 0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9399 nan 0.1000 0.0195
2 0.9082 nan 0.1000 0.0155
3 0.8845 nan 0.1000 0.0121
4 0.8637 nan 0.1000 0.0098
5 0.8464 nan 0.1000 0.0080
6 0.8299 nan 0.1000 0.0070
7 0.8178 nan 0.1000 0.0059
8 0.8077 nan 0.1000 0.0046
9 0.7972 nan 0.1000 0.0050
10 0.7889 nan 0.1000 0.0044
20 0.7311 nan 0.1000 0.0016
40 0.6790 nan 0.1000 0.0009
60 0.6466 nan 0.1000 0.0001
80 0.6307 nan 0.1000 -0.0000
100 0.6183 nan 0.1000 -0.0001
120 0.6069 nan 0.1000 -0.0001
140 0.6015 nan 0.1000 -0.0002
150 0.5998 nan 0.1000 -0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9339 nan 0.1000 0.0217
2 0.8964 nan 0.1000 0.0174
3 0.8657 nan 0.1000 0.0144
4 0.8410 nan 0.1000 0.0114
5 0.8199 nan 0.1000 0.0099
6 0.8024 nan 0.1000 0.0080
7 0.7877 nan 0.1000 0.0067
8 0.7748 nan 0.1000 0.0060
9 0.7632 nan 0.1000 0.0052
10 0.7525 nan 0.1000 0.0047
20 0.6859 nan 0.1000 0.0019
40 0.6374 nan 0.1000 0.0003
60 0.6107 nan 0.1000 0.0001
80 0.5985 nan 0.1000 -0.0001
100 0.5893 nan 0.1000 0.0001
120 0.5813 nan 0.1000 -0.0002
140 0.5777 nan 0.1000 -0.0001
150 0.5762 nan 0.1000 -0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9511 nan 0.1000 0.0131
2 0.9315 nan 0.1000 0.0104
3 0.9149 nan 0.1000 0.0085
4 0.9026 nan 0.1000 0.0052
5 0.8888 nan 0.1000 0.0070
6 0.8781 nan 0.1000 0.0057
7 0.8681 nan 0.1000 0.0047
8 0.8601 nan 0.1000 0.0037
9 0.8518 nan 0.1000 0.0044
10 0.8453 nan 0.1000 0.0031
20 0.7942 nan 0.1000 0.0013
40 0.7379 nan 0.1000 0.0005
60 0.7063 nan 0.1000 0.0000
80 0.6872 nan 0.1000 0.0004
100 0.6731 nan 0.1000 0.0001
120 0.6638 nan 0.1000 -0.0001
140 0.6574 nan 0.1000 -0.0000
150 0.6546 nan 0.1000 0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9397 nan 0.1000 0.0201
2 0.9071 nan 0.1000 0.0148
3 0.8813 nan 0.1000 0.0117
4 0.8591 nan 0.1000 0.0100
5 0.8408 nan 0.1000 0.0086
6 0.8270 nan 0.1000 0.0065
7 0.8139 nan 0.1000 0.0061
8 0.8042 nan 0.1000 0.0046
9 0.7936 nan 0.1000 0.0051
10 0.7860 nan 0.1000 0.0031
20 0.7278 nan 0.1000 0.0019
40 0.6739 nan 0.1000 0.0010
60 0.6461 nan 0.1000 0.0002
80 0.6301 nan 0.1000 0.0002
100 0.6171 nan 0.1000 0.0009
120 0.6103 nan 0.1000 -0.0004
140 0.6047 nan 0.1000 -0.0000
150 0.6011 nan 0.1000 -0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9338 nan 0.1000 0.0225
2 0.8945 nan 0.1000 0.0175
3 0.8668 nan 0.1000 0.0134
4 0.8420 nan 0.1000 0.0117
5 0.8216 nan 0.1000 0.0104
6 0.8025 nan 0.1000 0.0090
7 0.7862 nan 0.1000 0.0068
8 0.7730 nan 0.1000 0.0064
9 0.7606 nan 0.1000 0.0057
10 0.7505 nan 0.1000 0.0043
20 0.6852 nan 0.1000 0.0022
40 0.6338 nan 0.1000 0.0008
60 0.6085 nan 0.1000 -0.0000
80 0.5987 nan 0.1000 0.0000
100 0.5896 nan 0.1000 -0.0004
120 0.5833 nan 0.1000 -0.0001
140 0.5787 nan 0.1000 -0.0004
150 0.5758 nan 0.1000 -0.0003
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9535 nan 0.1000 0.0130
2 0.9331 nan 0.1000 0.0103
3 0.9168 nan 0.1000 0.0083
4 0.9034 nan 0.1000 0.0067
5 0.8918 nan 0.1000 0.0046
6 0.8812 nan 0.1000 0.0056
7 0.8725 nan 0.1000 0.0046
8 0.8648 nan 0.1000 0.0038
9 0.8556 nan 0.1000 0.0044
10 0.8487 nan 0.1000 0.0026
20 0.7960 nan 0.1000 0.0013
40 0.7390 nan 0.1000 0.0007
60 0.7087 nan 0.1000 0.0005
80 0.6902 nan 0.1000 -0.0001
100 0.6748 nan 0.1000 0.0000
120 0.6637 nan 0.1000 0.0001
140 0.6574 nan 0.1000 -0.0002
150 0.6549 nan 0.1000 -0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9394 nan 0.1000 0.0200
2 0.9087 nan 0.1000 0.0155
3 0.8841 nan 0.1000 0.0123
4 0.8645 nan 0.1000 0.0097
5 0.8470 nan 0.1000 0.0078
6 0.8323 nan 0.1000 0.0073
7 0.8178 nan 0.1000 0.0065
8 0.8055 nan 0.1000 0.0065
9 0.7944 nan 0.1000 0.0048
10 0.7884 nan 0.1000 0.0025
20 0.7290 nan 0.1000 0.0019
40 0.6782 nan 0.1000 0.0005
60 0.6519 nan 0.1000 0.0004
80 0.6284 nan 0.1000 0.0002
100 0.6185 nan 0.1000 -0.0000
120 0.6112 nan 0.1000 -0.0001
140 0.6060 nan 0.1000 -0.0002
150 0.6036 nan 0.1000 0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9349 nan 0.1000 0.0237
2 0.8977 nan 0.1000 0.0186
3 0.8697 nan 0.1000 0.0128
4 0.8430 nan 0.1000 0.0129
5 0.8211 nan 0.1000 0.0112
6 0.8014 nan 0.1000 0.0088
7 0.7866 nan 0.1000 0.0068
8 0.7733 nan 0.1000 0.0054
9 0.7614 nan 0.1000 0.0057
10 0.7511 nan 0.1000 0.0050
20 0.6861 nan 0.1000 0.0008
40 0.6347 nan 0.1000 0.0004
60 0.6114 nan 0.1000 0.0001
80 0.5967 nan 0.1000 -0.0003
100 0.5885 nan 0.1000 -0.0002
120 0.5819 nan 0.1000 -0.0002
140 0.5771 nan 0.1000 -0.0003
150 0.5742 nan 0.1000 -0.0004
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9538 nan 0.1000 0.0127
2 0.9328 nan 0.1000 0.0098
3 0.9174 nan 0.1000 0.0078
4 0.9040 nan 0.1000 0.0063
5 0.8905 nan 0.1000 0.0063
6 0.8798 nan 0.1000 0.0052
7 0.8700 nan 0.1000 0.0049
8 0.8619 nan 0.1000 0.0038
9 0.8520 nan 0.1000 0.0045
10 0.8457 nan 0.1000 0.0029
20 0.7929 nan 0.1000 0.0011
40 0.7399 nan 0.1000 0.0008
60 0.7091 nan 0.1000 0.0006
80 0.6895 nan 0.1000 0.0001
100 0.6778 nan 0.1000 0.0004
120 0.6678 nan 0.1000 0.0000
140 0.6615 nan 0.1000 0.0002
150 0.6589 nan 0.1000 -0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9387 nan 0.1000 0.0199
2 0.9066 nan 0.1000 0.0160
3 0.8810 nan 0.1000 0.0123
4 0.8607 nan 0.1000 0.0103
5 0.8439 nan 0.1000 0.0083
6 0.8291 nan 0.1000 0.0075
7 0.8167 nan 0.1000 0.0052
8 0.8060 nan 0.1000 0.0051
9 0.7969 nan 0.1000 0.0038
10 0.7903 nan 0.1000 0.0026
20 0.7268 nan 0.1000 0.0017
40 0.6735 nan 0.1000 0.0009
60 0.6443 nan 0.1000 0.0003
80 0.6270 nan 0.1000 -0.0001
100 0.6168 nan 0.1000 -0.0001
120 0.6106 nan 0.1000 -0.0001
140 0.6056 nan 0.1000 -0.0006
150 0.6029 nan 0.1000 -0.0002
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9374 nan 0.1000 0.0204
2 0.8989 nan 0.1000 0.0185
3 0.8675 nan 0.1000 0.0151
4 0.8428 nan 0.1000 0.0125
5 0.8202 nan 0.1000 0.0108
6 0.8041 nan 0.1000 0.0084
7 0.7873 nan 0.1000 0.0079
8 0.7735 nan 0.1000 0.0063
9 0.7610 nan 0.1000 0.0061
10 0.7521 nan 0.1000 0.0040
20 0.6864 nan 0.1000 0.0014
40 0.6356 nan 0.1000 0.0001
60 0.6128 nan 0.1000 0.0004
80 0.5997 nan 0.1000 -0.0001
100 0.5918 nan 0.1000 -0.0001
120 0.5849 nan 0.1000 -0.0003
140 0.5804 nan 0.1000 -0.0002
150 0.5778 nan 0.1000 0.0000
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9538 nan 0.1000 0.0123
2 0.9353 nan 0.1000 0.0098
3 0.9193 nan 0.1000 0.0079
4 0.9062 nan 0.1000 0.0056
5 0.8933 nan 0.1000 0.0064
6 0.8812 nan 0.1000 0.0050
7 0.8734 nan 0.1000 0.0040
8 0.8646 nan 0.1000 0.0045
9 0.8569 nan 0.1000 0.0033
10 0.8505 nan 0.1000 0.0027
20 0.8004 nan 0.1000 0.0013
40 0.7450 nan 0.1000 0.0010
60 0.7149 nan 0.1000 -0.0000
80 0.6969 nan 0.1000 0.0005
100 0.6843 nan 0.1000 0.0000
120 0.6741 nan 0.1000 -0.0002
140 0.6676 nan 0.1000 -0.0001
150 0.6641 nan 0.1000 0.0001
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9373 nan 0.1000 0.0199
2 0.9090 nan 0.1000 0.0146
3 0.8845 nan 0.1000 0.0118
4 0.8647 nan 0.1000 0.0088
5 0.8465 nan 0.1000 0.0084
6 0.8323 nan 0.1000 0.0067
7 0.8205 nan 0.1000 0.0058
8 0.8113 nan 0.1000 0.0039
9 0.8010 nan 0.1000 0.0047
10 0.7912 nan 0.1000 0.0041
20 0.7337 nan 0.1000 0.0018
40 0.6861 nan 0.1000 0.0002
60 0.6547 nan 0.1000 0.0004
80 0.6394 nan 0.1000 -0.0002
100 0.6263 nan 0.1000 -0.0001
120 0.6183 nan 0.1000 -0.0000
140 0.6104 nan 0.1000 -0.0002
150 0.6090 nan 0.1000 -0.0002
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9345 nan 0.1000 0.0221
2 0.8993 nan 0.1000 0.0162
3 0.8714 nan 0.1000 0.0141
4 0.8468 nan 0.1000 0.0115
5 0.8273 nan 0.1000 0.0089
6 0.8083 nan 0.1000 0.0094
7 0.7926 nan 0.1000 0.0068
8 0.7782 nan 0.1000 0.0059
9 0.7665 nan 0.1000 0.0051
10 0.7567 nan 0.1000 0.0043
20 0.6949 nan 0.1000 0.0012
40 0.6483 nan 0.1000 0.0004
60 0.6191 nan 0.1000 0.0003
80 0.6081 nan 0.1000 0.0000
100 0.5983 nan 0.1000 -0.0005
120 0.5909 nan 0.1000 0.0000
140 0.5862 nan 0.1000 -0.0002
150 0.5842 nan 0.1000 -0.0004
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.9309 nan 0.1000 0.0233
2 0.8955 nan 0.1000 0.0174
3 0.8667 nan 0.1000 0.0136
4 0.8406 nan 0.1000 0.0130
5 0.8201 nan 0.1000 0.0105
6 0.8029 nan 0.1000 0.0086
7 0.7892 nan 0.1000 0.0065
8 0.7756 nan 0.1000 0.0061
9 0.7644 nan 0.1000 0.0047
10 0.7524 nan 0.1000 0.0053
20 0.6864 nan 0.1000 0.0014
40 0.6406 nan 0.1000 0.0010
60 0.6186 nan 0.1000 0.0002
80 0.6040 nan 0.1000 0.0001
100 0.5942 nan 0.1000 0.0000
120 0.5880 nan 0.1000 -0.0002
140 0.5835 nan 0.1000 -0.0003
150 0.5806 nan 0.1000 -0.0000
Loading required package: pROC
Type 'citation("pROC")' for a citation.
Attaching package: 'pROC'
The following objects are masked from 'package:stats':
cov, smooth, var
Loading required package: PRROC
Warning: package 'PRROC' was built under R version 4.3.3
Loading required package: rlang
Warning: package 'rlang' was built under R version 4.3.3
Attaching package: 'rlang'
The following objects are masked from 'package:purrr':
%@%, flatten, flatten_chr, flatten_dbl, flatten_int, flatten_lgl,
flatten_raw, invoke, splice
The following object is masked from 'package:backports':
%||%
The following object is masked from 'package:data.table':
:=
Loading required package: ModelMetrics
Attaching package: 'ModelMetrics'
The following object is masked from 'package:pROC':
auc
The following objects are masked from 'package:caret':
confusionMatrix, precision, recall, sensitivity, specificity
The following object is masked from 'package:base':
kappa
Setting levels: control = N, case = Y
Setting direction: controls < cases
Preparation of a new explainer is initiated
-> model label : gbm
-> data : 5336 rows 51 cols
-> target variable : 0 values
-> target variable : length of 'y' is different than number of rows in 'data' ( WARNING )
-> predict function : yhat.train will be used ( default )
-> predicted values : No value for predict function target column. ( default )
-> model_info : package caret , ver. 7.0.1 , task classification ( default )
-> predicted values : numerical, min = 0.011907 , mean = 0.1909481 , max = 0.9730879
-> residual function : difference between y and yhat ( default )
Warning in min(residuals): no non-missing arguments to min; returning Inf
Warning in max(residuals): no non-missing arguments to max; returning -Inf
-> residuals : numerical, min = Inf , mean = NaN , max = -Inf
A new explainer has been created!
Visualize results
Here we create a plot of the feature importance scores for each of the top (here we have ) predictors identified by MLHO.
To do so, let’s map the concept codes to their “English” translation. That’s why we kept that 4th column called description in dbmart.